Original Article

A comparison of cephalometric measurements obtained from two computerized cephalometric softwares with manual tracings

Ravi Kumar Mahto¹, Om Prakash Kharbanda², Ritu Duggal³, Harish Kumar Sardana⁴

Abstract

Objectives: The objective of this study is to evaluate the reliability and accuracy of linear and angular cephalometric measurements obtained from two computerized cephalometric analysis softwares viz., AutoCEPH® (version 1.0) and Dolphin® (version 11.7) as compared to manual tracings. **Materials and Methods:** Fifty pretreatment lateral cephalograms were selected from the archives of a postgraduate orthodontic clinic. The digital images of each cephalogram were imported directly into two softwares Dolphin® and AutoCEPH® for onscreen digitization. While for manual tracings digital images were printed using a compatible X-ray printer. After images were standardized and calibrated 34 commonly used anatomical landmarks were plotted on each cephalogram. These landmarks were then utilized to evaluate 35 cephalometric parameters. Intraclass correlation coefficient (ICC) was used to determine both intrarater reliability for repeated measurements and agreement between linear and angular measurements obtained from the three methods. **Results:** High ICC values (>0.9) were obtained for all parameters while comparing three methods, i.e., manual tracings versus AutoCEPH®; manual tracings versus Dolphin® and AutoCEPH® versus Dolphin®. **Conclusion:** A high level of agreement (ICC >0.9) for cephalometric measurements was obtained from both the computerized softwares Dolphin® and AutoCEPH® in comparison with manual tracings.

Key words: AutoCEPH[©], computerized cephalometric analysis softwares, Dolphin[®], manual cephalometric tracings

NTRODUCTION

Cephalometric radiography is an indispensable tool in orthodontics for studying growth and development of dentofacial skeleton, diagnosis, treatment planning, and evaluating treatment results.^[1-4] Conventionally, manual

online
Quick Response Code
同でありは同
989966866

¹Former Junior Resident, ²Prof. and Head, ³Professor, ⁴Chief Scientist and Professor

 1.2.3 Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi,
 4 Department of Computational Intrumentation, Academy of Scientific and Innovative Research, CSIR-Central Scientific Instruments Organization, Chandigarh, India

Address for correspondence: Prof. Om Prakash Kharbanda, Division of Orthodontics and Dentofacial Deformities, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi - 110 029, India.

E-mail: dr.opk15@gmail.com

Received: 19-08-2015, Accepted with Revisions: 22-05-2016

tracing is considered "Gold standard" in cephalometric analysis. However, it is cumbersome, time consuming and can be associated with various errors. These errors can occur due to improper tracing, inaccurate landmark identification, measurement and calculation errors in addition to errors occurring due to human fatigue.^[3-8]

With recent technological advances and increasing use of computers in the field of orthodontics cephalometric analysis using computerized cephalometric analysis softwares have gained popularity. These softwares have eliminated various errors associated with manual tracings and are less time consuming. Another big advantage of using computerized cephalometry is that multiple analyses can be done in a very short period. [9-14]

Over the years, various softwares have been developed which claim to be as reliable and accurate if not more than manual tracings. Most of the studies which evaluated the reliability

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Mahto RK, Kharbanda OP, Duggal R, Sardana HK. A comparison of cephalometric measurements obtained from two computerized cephalometric softwares with manual tracings. J Indian Orthod Soc 2016;50:162-70.

Mahto, et al.: A comparison of manual and computerized cephalometric analysis

and accuracy of different cephalometric measurements by cephalometric software programs have concluded that the differences between the measurements obtained from manual tracing and that from computerized cephalometric softwares were statistically significant, but these differences were found to be clinically insignificant and acceptable [Table 1].

Table 1: Studies comparing different computerized cephalometric analysis softwares with manual tracings				
Author(s) and year	N	Software(s)	Parameters	Results
Nimkarn and Miles (1995) ^[15]	40	Quick Ceph	40	High agreement
Ongkosuwito et al. (2002)[16]	20	$AOCeph^{TM}$	24 (14 A and 10 L)	High agreement
Gregston et al. (2004) ^[17]	10	Dolphin® and Vistadent TM	15 (10 A and 5 L)	High agreement except SN-GoMe, FH-GoMe, SNA, SNB, NBa-PTGn, U1-NA (mm), L1-NB (°) and L1-NB (mm)
Power et al. (2005) ^[18]	60	Dolphin [®]	8 (7 A and 1 R)	Statistically significant difference for most of the parameters
Gossett et al. (2005)[19]	31	Dolphin [®]	16 (8 A and 8 L)	High agreement except interincisal angle, U1-NA. L1-NB
Santoro et al. (2006)[20]	50	Dolphin®	13 (9 A, 2 L and 2 R)	High agreement except S-Go/N-Me, U1-L1 (°)
Bruntz et al. (2006) ^[21]	30	Dolphin [®]	23 (20 A and 3 L)	High agreement except facial plane, Y axis, occlusal plane, FMA, FH/NA, U1-FH
Sayinsu et al. (2007)[10]	30	Dolphin®	35 (18 A, 13 L and 4 R)	
Roden et al. (2008)[22]	30	Quick Ceph	-	High agreement
Dvortsin et al. (2008)[23]	20	Viewbox®	17 (11 L and 6 A)	Statistically significant difference for most of the parameters but difference was clinically insignificant
Celik et al. (2009) ^[9]	125	JOE and Vistadent $^{\text{TM}}$	28	High agreement except Nperp-Pog, Go-Me, APFH, ANS-Me (mm), U1-NA (mm), Nasolabial angle
Polat-Ozsoy et al. (2009)[24]	30	Vistadent TM	26	High agreement except SNB, Wits, Cd-A, Cd-Gn, FMA, SN-PP, U1-NA (mm), U1-FH, L1-NB (mm) and Li-E plane
Naoumova and Lindman (2009) ^[25]	30	FACAD®	-	High agreement
Uysal et al. (2009) ^[26]	100	Dolphin [®]	17 (11 A and 6 L)	High agreement except Na perpendicular A, Na perpendicular Pog, and U1-NA distance
Tsorovas and Karsten (2010) ^[11]	30	Viewbox®, OnyxCeph®, OrisCeph®, Facad® and Winceph®	23 (14 A and 9 L)	High agreement except AB on FOP and Li-NB (mm)
Krishnaraj R $etal.(2010)^{[27]}$	10	Dolphin®	18 (11 A and 7 L)	High agreement except U1-NA (°), U1-NA (mm), L1-NB (mm), L1-APg (°), N-A, Co-A
Paixão MB et al. (2010)[28]	50	Dolphin®	14 (8 A and 6 L)	High agreement
Guedes PA et al. (2010)[29]	50	Cef-X 2001	7 (2 L and 5 A)	High agreement except 1-NA, 1-NB
Erkan <i>et al.</i> (2012) ^[13]	30	Dolphin®, Vistadent TM , Nemoceph NX and Quick Ceph	15 (5 L and 10 A)	High agreement
Albarakati <i>et al.</i> (2012) ^[14]	30	Dolphin [®]	16 (10 A and 6 L)	Statistically significant difference for most of the parameters but difference was clinically insignificant
Tikku T <i>et al.</i> (2014) ^[30]	40	Nemoceph NX	26 (13 L and 13 A)	High agreement except AFH, PFH, ULL, LLL, ACBL), PCBL, MxL, MdL), L1-NB line, LLP and occlusal plane angle
Prabhakar R <i>et al.</i> (2014) ^[31]	30	Dolphin® and Nemoceph NX	21 (12 A and 9 L)	High agreement except Co-A and Co-Gn
Kumar D <i>et al</i> . (2014) ^[32]	60	Nemoceph NX	Burrstone analysis; 36 (20 hard tissue and 16 soft tissue)	High agreement except AO-BO, Ar-Ptm, Ar-GoN, B-Pg, PNS-N, Ptm-N, Inter labial gap, lower face throat angle, nasolabialangle, lip embrasure to occlusal plane, lip protrusion, upper lip length
Segura et al. (2014)[33]	20	Nemoceph NX	12 (6 L and 6 A)	High agreement
Goracci and Ferrari (2014) ^[34]	20	Smile Ceph and Nemoceph NX	11 (6 A and 5 L)	High agreement except for Wits, A to N-perp and Pog to N-perp

N: Number of samples, L: Linear, A: Angular, R: Ratio. Quick Ceph (Quick Ceph Systems, San Diego, California, USA), AOCeph™ (American Orthodontics, Sheboygan, USA), Dolphin® (Dolphin Imaging, Chatsworth, California, USA), VistadentTM (GAC International, Bohemia, New York, USA), Viewbox® (dHAL Software, Kifi sia, Greece), JOE (RockyMountain Orthodontics, Denver, CO, USA), Facad® (Ilexis AB, Linköping, Sweden), OnyxCeph® (Image Instruments GmbH, Frankfurt, Germany), OrisCeph® (Elite ComputerItalia, Vimodrone, Italy), Winceph® (Rise CorpoRn, Sendai, Japan), Cef-X 2001 software (CDT, Cuiabá, Brazil), NemocephNX (Nemotec, Madrid, Spain), Smile Ceph (GlaceSoftware, Imola, Italy), SN-GoMe (Sella Nasion -Gonion Menton angle), FH-GoMe (Frankfort Horizontal - Gonion Menton angle), SNA(Sella-Nasion-point A angle), SNB (Sella-Nasion-point B angle), NBa-PtGn(Nasion Basion-Pt Point Gnathion angle), U1-NA (Upper incisor to NA), L1-NB (Lower incisor to NB), S-Go/N-Me (Sella Gonion/Nasion Menton ratio), U1-L1(upper incisor-lower incisor angle), FMA (Frankfort mandibular plane angle), FH/NA (Frankfort horizontal plane to Nasion point A plane), U1-FH (Upper incisor to Frankfort horizontal plane), Nperp-Pog (Pogonion to nasion perpendicular), Go-Me (Gonion -Menton), APFH (ratio between post. and ant. Facial height), ANS-Me (Anterior nasal spine to Menton), Cd-A/Co-A (Condylion to point A), Cd-Gn/Co-Gn (Condylion toGnathion), SN-PP (Sella Nasion to Palatal plane angle), L1-NB (Lower incisor to NB), Li E-plane (lower incisor to E-plane), L1APg (Lower incisor to A-Pogonion), 1-NA (angle between incisor and NA line), 1-NB (angle between incisor and NB line), AFH (Anterior facial height), PFH (Posterior facial height), ULP (Lower lip protrusion), AOBO (Distance between point A and point B projected on occlusal plane) Ar-Ptm (Articulare to Ptm point), Ar-GoN (Articulare Gonion Nasion), B-Pg (point B to Pogonion), PNS-N (Posterior nasal spine-Nasion), Ptm-N (Ptm point-Nasion)

Recently, an indigenous two-dimensional (2D) computerized cephalometric analysis software named "AutoCEPH" has been designed and developed in the context of Indian orthodontic clinical practices by CSIR-Central Scientific Instruments Organization (CSIO), Chandigarh in collaboration with Department of Orthodontics and Dentofacial Deformities, CDER, All India Institute of Medical Sciences, New Delhi after extensive research and field trial. An indigenous version must be cost-effective, reliable, user-friendly, and it must be equipped with population-based normative data for chosen ethnic group. Keeping in mind about the needs, we have designed "AutoCEPH®." This software output allows comparison with means of the original studies and with that of respective means on Indian ethnic groups.

However, no study has been done so far to evaluate the reliability and accuracy of cephalometric measurements obtained from it. Hence, this study was done with the aim to evaluate the reliability and accuracy of linear and angular cephalometric measurements obtained from two computerized cephalometric analysis softwares viz., AutoCEPH[©] (version 1.0) and Dolphin® (version 11.7) (Dolphin Imaging, Chatsworth, California, USA) as compared to manual tracings.

MATERIALS AND METHODS

A total of fifty pretreatment lateral cephalogram of patients were obtained from the cephalometric database of a postgraduate orthodontic clinic. All the cephalograms acquired were taken from the same digital cephalometer (STRATO 2000 Digital Version, Villa Sistemi Medicali, Italy; magnification ×1.1) and had the calibration ruler for determination of magnification. For manual tracing, hard copies of images were obtained on 8"X10" radiographic film using compatible X-ray printer (Drystar 5302, Agfa HealthCare NV, Mortsel, Belgium).

Calibration of the actual size of each image in millimeters was done based on measurement of the known distance (e.g., 10 mm) between the two fixed points of the ruler present on the analog as well as digital cephalogram displayed onscreen.

Manual tracings

Manual tracing was done using standard protocols. Using a millimeter ruler and protractor all linear and angular measurements were taken with the help of to the nearest 0.5 mm and 0.5° respectively [Figure 1]. After adding magnification factor to the obtained linear measurements, final values were recorded. All measurements were entered into an Excel spreadsheet.

Digital tracing

For computerized cephalometric measurements, digital images of same cephalograms were directly imported to the computerized cephalometric softwares viz., AutoCEPH° version 1.0 [Figure 2] and Dolphin® imaging software version 11.7 [Figure 3]. These direct digital images were standardized and calibrated in millimeters using ruler present

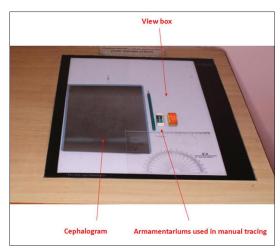


Figure 1: Manual tracing

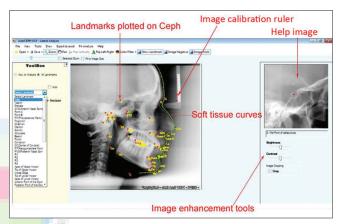


Figure 2: On-screen digitization using AutoCEPH[©] (version 1.0)

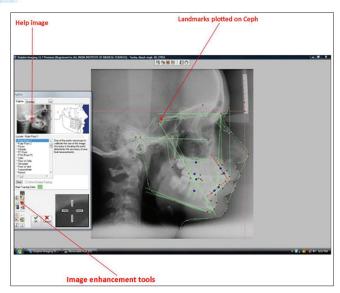


Figure 3: On-screen digitization using Dolphin® (version 11.7)

on cephalogram. Using on-screen digitization landmarks were plotted and the image enhancement features of the software such as zooming, brightness and contrast adjustment, color Mahto, et al.: A comparison of manual and computerized cephalometric analysis

filters were used as needed to identify individual cephalometric landmarks as precisely as possible. The selected landmarks were traced with bilateral structures averaged to make a single structure or landmark.

All the tracings (manual as well as digital) were done by a same investigator. Only five cephalograms were analyzed daily to avoid the human fatigue errors. To evaluate intraobserver reliability and reproducibility for manual and digital methods, ten radiographs were randomly selected. The same radiographs were then retraced manually and digitally with each cephalometric tracing program, with a 10 days gap between evaluations. To evaluate the intra-observer reliability and reproducibility for all the three methods of cephalometric measurement, intraclass correlation coefficient (ICC) was calculated. We found that all ICC values were more than 0.9 for all the three methods. It shows a very high intrarater agreement for all the three methods.

A total of 34 commonly used anatomical landmarks were plotted on each cephalogram [Figure 4]. These landmarks were then utilized to evaluate 35 cephalometric parameters which include 19 linear, 15 angular, and 1 ratio [Figures 5-8]. Of these parameters, there were 22 skeletal, 9 dental, and 4 soft tissue related variables [Table 2].

Statistical analysis

A total of 5250 readings were recorded which included 105 readings from each patient (35 readings per method). The analysis was carried out using Statistical Package for Social Sciences version 16.0 (SPSS Inc., Chicago, IL, USA). Average values of cephalometric measurements were calculated and presented as mean ± standard deviation. Differences in the

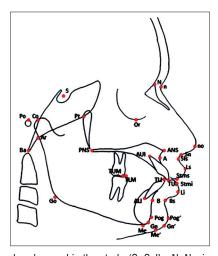
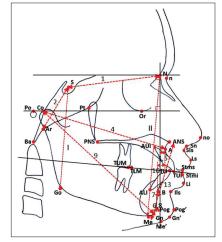


Figure 4: Landmarks used in the study (S: Sella, N: Nasion, Po: Porion, Or: orbitale, Pt: Pt Point, Co: Condylion, Ar: Articulare, Ba: Basion, Go: Gonion, PNS: Posterior Nasal Spine, ANS: Anterior Nasal Spine, A: Pt A, B: Pt B, Pog: Pogonion, Me: Menton, Gn: Gnathion, TUI: Tip of U1, AUI: Apex of U1, TLI: Tip of lower incisor, ALI: Apex of L1, TUM: Cusp tip of U6, TLM: Cusp tip of L6, n: Soft tissue nasion, no: Tip of nose, Sn: Subnasale, Sls: Superior labial sulcus, Ls: Labrale superius, Stms: Stomion superius, Stmi: Stomion inferius, Li: Labrale inferius, Ils: Inferior labial sulcus, Pog': Soft tissue pogonion, Gn': Soft tissue gnathion, Me': Soft tissue menton)

mean were analyzed using analysis of variances. The level of significance was set at P < 0.05. ICC was used to determine

Table 2: Cephalometric parar	neters used in the study
Skeletal parameters	Dental parameters
ACBL (S-N)	U1NA (°)
PCBL (S-Ar)	U1NA (mm)
SA (N-S-Ar)	U1APog (mm)
SNA	U1SN (°)
Pt. A -N per	U1NF (mm)
Co -Pt. A	L1NB (°)
N-A (II HP)	L1NB (mm)
SNB	L1MP (°)
Pog-N Perp	L1A-Pog (mm)
N-B (II HP)	Soft tissue
N-Pg (II HP)	NA
Co-Gn	U1 E line
ANB	L1 E line
WITS	HA
MMD	
FMA	
Ar-Go-Me	
S-N X Go-Gn	
YAA (S-Gn X Po-Or)	
FAA (Ba-N X	
Ptm-Gn)	
JR (S-Go/N-Me)	
LAFH (ANS – Me)	

ACBL: Anterior cranial base length, PCBL: Posterior cranial base length, SA: Saddle Angle, SNA: Sella-Nasion- point A, Pt. A N per: Point A to Nasion perpendicular, Co Pt. A: Condylion to point A, N-A (II HP): Nasion to point A (parallel to horizontal plane), SNB: Sella-Nasion-point B, Pog N perp: Pogonion to nasion perpendicular, N-B (II HP): Nasion to point B (parallel to horizontal plane), N Pog II HP: Nasion to pogonion parallel horizontal plane, CoGn: Condylion to Gnathion, MMD: Maxillary/mandibular difference, FMA: Frankfort mandibular plane angle, GA: Gonial angle, YAA: Y-axis angle, FAA: Facial-axis angle, JR: Jarabaks ratio, LAFH: Lower anterior facial height, UINA: Upper incisor to NA, UIAPog: Upper incisor to A-Pog, UI SN: Upper incisor to S-N, U1 NF: Upper incisor to nasal floor, LINB: Lower incisor to NB, L1MP: Lower incisor to Mandibular Plane, L1APog: Lower incisor to A-Pogonion, NA: Nasolabial angle, UI E line: Upper lip to E line, LI E line: Lower lip to E line, HA: Holdaway angle



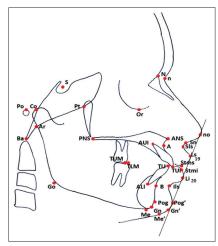


Figure 5: Skeletal linear parameters used in the study (1: ACBL, 2: PCBL, 3: Pt. A-N per, 4: Co-Pt. A, 5: N-A [II HP], 6: Pog-N Perp, 7: N-B [II HP], 8: N-Pg [II HP], 9: Co-Gn, 10: WITS, 11: MMD[9–4], 12: JR [S-Go(I)/N-Me(II)], 13: LAFH)

Figure 6: Dental linear parameters used in the study (14: U1NA [mm], 15: U1APog [mm], 16: U1NF [mm], 17: L1NB [mm], 18: L1A-Pog [mm])

Figure 7: Soft-tissue linear parameters used in the study (19: U1 E line, 20: L1 E line)

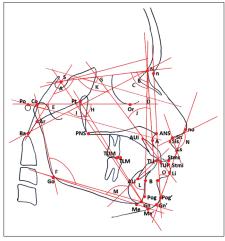


Figure 8: Angular parameters used in the study (A: SA [N-S-Ar], B: SNA, C: SNB, D: ANB, E: FMA, F: GA [Ar-Go-Me], G: S-N X Go-Gn, H: YAA [S-Gn X Po-Or], I: FAA [Ba-N X Ptm-Gn], J: U1NA [°], K: U1SN [°], L: L1NB [°], M: L1MP [°], N: NA, O: HA

intrarater reliability for each tracing technique as well as to evaluate reproducibility for each cephalometric parameter. ICC value of 0.75 is indicative of low agreement whereas ICC value of >0.75 is indicative of a good agreement.

RESULTS

The average values of cephalometric measurements used in the 3 methods are shown in Table 3. There were no significant differences for most of the parameters by three methods except UI-E line and LI-E line (P < 0.05).

The ICC values of cephalometric measurements obtained with the three tracing techniques are reported in Tables 4-6. Of 35 parameters analyzed ICC values for 33 parameters exceeded 0.9 indicative of very high level of agreement.

Manual tracings versus AutoCEPH®

All the 33 parameters showed high level of correlation between the measurements (ICC >0.943) except UI-E line (ICC 0.574 [0.249-0.758]) and LI-E line (ICC -2.579 [-5.367 to -1.031]).

Among the skeletal parameters, ICC value was between 0.943 and 0.995, for dental parameters, it was between 0.973 and 0.994 while for soft tissue it was between -2.579 and 0.990. The highest value was for MMD (ICC 0.995).

Manual tracings versus Dolphin®

All the parameters showed high level of agreement between the measurements (ICC >0.915). Among the skeletal parameters ICC value was between 0.916 and 0.995, for dental parameters, it was between 0.939 and 0.993 while for soft tissue it was between 0.915 and 0.990. The highest value was for ANB (ICC 0.995).

AutoCEPH® versus Dolphin®

All the 33 parameters showed high level of correlation between the measurements (ICC >0.906) except UI-E line (ICC 0.593 [0.283–0.769]) and LI-E line (ICC – 2.454 [–5.0286 to –0.960]).

Among the skeletal parameters ICC ranged from 0.906 to 0.998, for dental parameters it was between 0.935 and 0.997 while for soft tissue it ranged between -2.454 and 0.994. The highest value was for ANB (ICC 0.998).

DISCUSSION

Cephalometric analysis has been considered as an important aid both in day to day clinical practice as well as research necessitating the accuracy in data obtained from cephalometric analysis. With the technological advancement, a number of commercially available computerized cephalometric analysis softwares have been developed which claim to be accurate and user-friendly.

AutoCEPH® is an indigenous 2D computerized cephalometric analysis software designed and developed by keeping in mind about the need of India and Indian subcontinent. However,

Table 3: Average values of cephalometric measurements used in the 3 methods (hand tracing, AutoCEPH $^{\circ}$ and Dolphin $^{\circ}$) (n=50)

Average cephalometric values			
Manual AutoCEPH® Dolphin®			
65.65±3.55	64.87±3.89	65.58±3.70	0.50
31.75±3.10	31.92±3.43	32.16±3.35	0.82
123.90±5.11	124.15±5.32	124.42±5.32	0.88
81.48±3.72	81.31±4.00	81.20±3.76	0.93
-0.37 ± 3.19	-0.46 ± 3.29	-0.35±3.25	0.98
81.98±5.88	81.32±6.13	82.21±6.23	0.75
-1.62 ± 3.37	-1.57 ± 3.63	-1.7 ± 3.56	0.97
78.97 ± 5.02	78.70 ± 5.05	78.52 ± 4.96	0.90
-3.99 ± 7.12	-3.96 ± 7.09	-3.80 ± 6.91	0.98
-6.61 ± 7.73	-6.48 ± 7.48	-6.84 ± 7.56	0.97
-6.11±8.29	-5.91 ± 8.11	-6.30 ± 8.15	0.97
104.59±7.31	103.79±7.72	104.79±7.45	0.77
2.51±4.14	2.61±4.08	2.66±4.15	0.98
-0.23 ± 5.42	-0.28 ± 5.44	-0.06 ± 5.71	0.94
22.57±5.67	22.46±5.83	22.55±5.89	0.99
24.90±6.27	25.17±6.28	27.75±6.28	0.94
126.90±6.94	127.67±6.76	125.54±8.11	0.33
29.97±6.46	30.23±6.39	29.94±6.48	0.97
57.92±4.09	58.10 ± 4.08	58.55±4.05	0.72
1.33 ± 4.26	1.05 ± 4.20	0.288 ± 4.24	0.44
64.89 ± 5.57	64.76±5.64	64.51±5.44	0.94
58.83±5.69	58.66±5.78	58.98±5.36	0.96
28.59±7.28	29.02±7.10	28.63±7.00	0.94
5.00 ± 2.71	4.93±2.69	4.95±2.69	0.99
6.34±3.76	6.27±3.51	6.37±3.57	0.99
109.82±8.34	110.28±8.18	109.81±7.93	0.94
24.27±2.85	24.67±2.77	24.55±2.61	0.75
28.35±8.12	28.53±7.92	28.36±7.95	0.99
5.36±3.39	5.58±3.17	5.62±3.20	0.91
96.41±9.56	96.46±9.33	96.62±9.26	0.99
3.49±3.43	3.52±3.45	3.50±3.51	0.99
101.01±9.60	101.69±10.04	101.22±8.46	0.93
-1.21±3.09	-2.56 ± 1.98	-0.29±2.95	0.02*
1.11±3.56	-2.58 ± 2.66	1.44±3.42	0.00**
19.60±6.42	19.58±6.39	19.67±6.38	0.99
	Manual 65.65±3.55 31.75±3.10 123.90±5.11 81.48±3.72 -0.37±3.19 81.98±5.88 -1.62±3.37 78.97±5.02 -3.99±7.12 -6.61±7.73 -6.11±8.29 104.59±7.31 2.51±4.14 -0.23±5.42 22.57±5.67 24.90±6.27 126.90±6.94 29.97±6.46 57.92±4.09 1.33±4.26 64.89±5.57 58.83±5.69 28.59±7.28 5.00±2.71 6.34±3.76 109.82±8.34 24.27±2.85 28.35±8.12 5.36±3.39 96.41±9.56 3.49±3.43 101.01±9.60 -1.21±3.09 1.11±3.56 19.60±6.42	Manual AutoCEPH® 65.65±3.55 64.87±3.89 31.75±3.10 31.92±3.43 123.90±5.11 124.15±5.32 81.48±3.72 81.31±4.00 −0.37±3.19 −0.46±3.29 81.98±5.88 81.32±6.13 −1.62±3.37 −1.57±3.63 78.97±5.02 78.70±5.05 −3.99±7.12 −3.96±7.09 −6.61±7.73 −6.48±7.48 −6.11±8.29 −5.91±8.11 104.59±7.31 103.79±7.72 2.51±4.14 2.61±4.08 −0.23±5.42 −0.28±5.44 22.57±5.67 22.46±5.83 24.90±6.27 25.17±6.28 126.90±6.94 127.67±6.76 29.97±6.46 30.23±6.39 57.92±4.09 58.10±4.08 1.33±4.26 1.05±4.20 64.89±5.57 64.76±5.64 58.83±5.69 58.66±5.78 28.59±7.28 29.02±7.10 5.00±2.71 4.93±2.69 6.34±3.76 6.27±3.51 109.82±8.34 110.28±8.18 24	Manual AutoCEPH® Dolphin® 65.65±3.55 64.87±3.89 65.58±3.70 31.75±3.10 31.92±3.43 32.16±3.35 123.90±5.11 124.15±5.32 124.42±5.32 81.48±3.72 81.31±4.00 81.20±3.76 −0.37±3.19 −0.46±3.29 −0.35±3.25 81.98±5.88 81.32±6.13 82.21±6.23 −1.62±3.37 −1.57±3.63 −1.7±3.56 78.97±5.02 78.70±5.05 78.52±4.96 −3.99±7.12 −3.96±7.09 −3.80±6.91 −6.61±7.73 −6.48±7.48 −6.84±7.56 −6.11±8.29 −5.91±8.11 −6.30±8.15 104.59±7.31 103.79±7.72 104.79±7.45 2.51±4.14 2.61±4.08 2.66±4.15 −0.23±5.42 −0.28±5.44 −0.06±5.71 22.57±5.67 22.46±5.83 22.55±5.89 24.90±6.27 25.17±6.28 27.75±6.28 126.90±6.94 127.67±6.76 125.54±8.11 29.97±4.09 58.10±4.08 58.55±4.05 1.33±4.26 1.05±4.20 0.288±4.24

*P<0.05, **P<0.01. ACBL: Anterior cranial base length, PCBL: Posterior cranial base length, SA: Saddle Angle, SNA: Sella-Nasion- point A, Pt. A N per: Point A to Nasion perpendicular, Co Pt. A: Condylion to point A, N-A (II HP): Nasion to point A (parallel to horizontal plane), SNB: Sella-Nasion- point B, Pog N perp: Pogonion to nasion perpendicular, N-B (II HP): Nasion to point B (parallel to horizontal plane), N Pog II HP: Nasion to pogonion parallel horizontal plane, CoGn: Condylion to Gnathion, MMD: Maxillary/mandibular difference, FMA: Frankfort mandibular plane angle, GA: Gonial angle, YAA: Y-axis angle, FAA: Facial-axis angle, JR: Jarabaks ratio, LAFH: Lower anterior facial height, UINA: Upper incisor to NA, UIAPog: Upper incisor to A-Pog, UI SN: Upper incisor to S-N, UI NF: Upper incisor to nasal floor, LINB: Lower incisor to NB, L1MP: Lower incisor to Mandibular Plane, L1APog: Lower incisor to A-Pogonion, NA: Nasolabial angle, UI E line: Upper lip to E line, LI E line: Lower lip to E line, HA: Holdaway angle

no study has been done so far to evaluate the reliability and accuracy of cephalometric measurements obtained from $AutoCEPH^{\circ}$.

Hence, this study was conducted with an aim of comparing the digital and conventional tracing methods. Furthermore,

Table 4: Intraclass correlation coefficient and 95% confidence interval of cephalometric measurements between hand tracing and AutoCEPH®- skeletal, dental and soft tissue parameters

Parameters	Manual versus Autoceph®		
	ICC	95% CI	
ACBL	0.943	0.899-0.967	
PCBL	0.976	0.958-0.986	
SA	0.961	0.931-0978	
SNA	0.986	0.975-0.992	
Point A N perpendicular	0.982	0.967-0.990	
Co Pt. A	0.966	0.940-0.981	
NA II HP	0.978	0.962-0.988	
SNB	0.993	0.988-0.996	
Pog N perpendicular	0.991	0.983-0.995	
NB II HP	0.991	0.984-0.995	
N Pog II HP	0.990	0.982-0.994	
CoGn	0.975	0.956-0.986	
ANB	0.994	0.990-0.997	
Wits	0.994	0.989-0.996	
MMD	0.995	0.991-0.997	
FMA	0.993	0.987-0.996	
GA	0.979	0.964-0.988	
SnGoGN	0.992	0.985-0.995	
YA	0.985	0.974-0.992	
FAA	0.988	0.978-0.993	
JR	0.987	0.977-0.993	
LAFH	0.983	0.970-0.990	
UINA (°)	0.975	0.957-0.986	
U1NA (mm)	0.981	0.966-0.989	
U1APog (mm)	0.994	0.990-0.997	
U1 SN (°)	0.985	0.973-0.991	
U1 NF (mm)	0.973	0.953-0.985	
L1NB (°)	0.986	0.976-0.992	
L1NB (mm)	0.992	0.986-0.995	
L1MP (°)	0.990	0.983-0.994	
L1APog	0.993	0.987-0.996	
NA	0.950	0.912-0.972	
UI E line	0.574	0.249-0.758	
LI E line	-2.579	-5.3671.031	
HA	0.990	0.982-0.994	

ACBL: Anterior cranial base length, PCBL: Posterior cranial base length, SA: Saddle Angle, SNA: Sella-Nasion-point A, Pt. A N per: Point A to Nasion perpendicular, Co Pt. A: Condylion to point A, N-A (II HP): Nasion to point A (parallel to horizontal plane), SNB: Sella-Nasion-point B, Pog N perp: Pogonion to nasion perpendicular, N-B (II HP): Nasion to point B (parallel to horizontal plane), N Pog II HP: Nasion to pogonion parallel horizontal plane, CoGn: Condylion to Gnathion, MMD: Maxillary/mandibular difference, FMA: Frankfort mandibular plane angle, GA: Gonial angle, YAA: Y-axis angle, FAA: Facial-axis angle, JR: Jarabaks ratio, LAFH: Lower anterior facial height, UINA: Upper incisor to NA, UIAPog: Upper incisor to A-Pog, UI SN: Upper incisor to S-N, U1 NF: Upper incisor to nasal floor, LINB: Lower incisor to NB, L1MP: Lower incisor to Mandibular Plane, L1APog: Lower incisor to A-Pogonion, NA: Nasolabial angle, UI E line: Upper lip to E line, LI E line: Lower lip to E line, HA: Holdaway angle

reliability and accuracy of linear and angular cephalometric measurements obtained from indigenously developed computerized cephalometric software "AutoCEPH®" version 1.0 was compared with manual and Dolphin®

Table 5: Intraclass correlation coefficient and 95% confidence interval of cephalometric measurements between hand tracing and Dolphin®-skeletal, dental and soft tissue parameters

Parameters	arameters Manual versus Dolphin		
	ICC	95% CI	
ACBL	0.916	0.852-0.952	
PCBL	0.970	0.948-0.983	
SA	0.978	0.961-0.987	
SNA	0.983	0.970-0.990	
Pt. A Nper	0.976	0.958-0.987	
Co Pt. A	0.972	0.950-0.984	
NA II HP	0.977	0.960-0.987	
SNB	0.991	0.985-0.995	
Pog N perp	0.990	0.982-0.994	
NB II HP	0.990	0.982-0.994	
N Pog II HP	0.990	0.983-0.995	
CoGn	0.971	0.949-0.983	
ANB	0.995	0.992-0.997	
Wits	0.992	0.986-0.996	
MMD	0.992	0.987-0.996	
FMA	0.990	0.983-0.994	
GA	0.964	0.937-0.980	
SnGoGN	0.991	0.984-0.995	
YA	0.982	0.968-0.990	
FAA	0.990	0.982-0.994	
JR	0.983	0.971-0.991	
LAFH	0.982	0.968-0.990	
U1NA (°)	0.977	0.960-0.987	
U1NA (mm)	0.982	0.969-0.990	
U1APog (mm)	0.993	0.988-0.996	
U1 SN (°)	0.983	0.971-0.991	
U1 NF (mm)	0.939	0.892-0.965	
L1NB (°)	0.984	0.972-0.991	
L1NB (mm)	0.992	0.986-0.996	
L1MP (°)	0.989	0.980-0.994	
L1APog	0.990	0.982-0.994	
NA	0.915	0.851-0.952	
UI Eline	0.990	0.982-0.994	
LI Eline	0.988	0.980-0.993	
HA	0.985	0.974-0.992	

ACBL: Anterior cranial base length, PCBL: Posterior cranial base length, SA: Saddle Angle, SNA: Sella-Nasion-point A, Pt. A N per: Point A to Nasion perpendicular, Co Pt. A: Condylion to point A, N-A (II HP): Nasion to point A (parallel to horizontal plane), SNB: Sella-Nasion-point B, Pog N perp: Pogonion to nasion perpendicular, N-B (II HP): Nasion to point B (parallel to horizontal plane), N Pog II HP: Nasion to pogonion parallel horizontal plane, CoGn: Condylion to Gnathion, MMD: Maxillary/mandibular difference, FMA: Frankfort mandibular plane angle, GA: Gonial angle, YAA: Y-axis angle, FAA: Facial-axis angle, JR: Jarabaks ratio, LAFH: Lower anterior facial height, UINA: Upper incisor to NA, UIAPog: Upper incisor to A-Pog, UI SN: Upper incisor to S-N, U1 NF: Upper incisor to nasal floor, LINB: Lower incisor to NB, L1MP: Lower incisor to Mandibular Plane, L1APog: Lower incisor to A-Pogonion, NA: Nasolabial angle, UI E line: Upper lip to E line, LI E line: Lower lip to E line, HA: Holdaway angle

imaging software version 11.7 (Dolphin Imaging, Chatsworth, California, USA) respectively.

To determine the reliability and accuracy of computerized cephalometric softwares, cephalometric measurements

Table 6: Intraclass correlation coefficient and 95% confidence interval of cephalometric measurements between AutoCEPH® and Dolphin®-skeletal, dental and soft tissue parameters

Parameters	AutoCEPH®	versus Dolphin®
	ICC	95% CI
ACBL	0.906	0.834-0.947
PCBL	0.968	0.943-0.982
SA	0.978	0.962-0.988
SNA	0.991	0.984-0.995
Pt. A Nper	0.990	0.982-0.994
Co Pt. A	0.960	0.930-0.977
NA II HP	0.988	0.979-0.993
SNB	0.994	0.989-0.997
Pog N perp	0.994	0.990-0.997
NB II HP	0.992	0.987-0.996
N Pog II HP	0.993	0.988-0.996
CoGn	0.963	0.934-0.979
ANB	0.998	0.996-0.999
Wits	0.991	0.984-0.995
MMD	0.996	0.992-0.997
FMA	0.994	0.989-0.996
GA	0.975	0.956-0.986
SnGoGN	0.994	0.989-0.996
YA	0.992	0.986-0.996
FAA	0.990	0.983-0.994
JR	0.986	0.975-0.992
LAFH	0.967	0.942-0.981
U1NA (°)	0.987	0.976-0.992
U1NA (mm)	0.992	0.986-0.995
U1APog (mm)	0.997	0.995-0.998
U1 SN (°)	0.988	0.980-0.993
U1 NF (mm)	0.935	0.885-0.963
L1NB (°)	0.990	0.982-0.994
L1NB (mm)	0.995	0.991-0.997
L1MP (°)	0.990	0.982-0.994
L1APog	0.996	0.993-0.998
NA	0.919	0.858-0.954
UI E line	0.593	0.283-0.769
LI E line	-2.454	-5.02860.960
HA	0.994	0.989-0.997

ICC: Intraclass correlation coefficient, CI: Confidence interval, ACBL: Anterior cranial base length, PCBL: Posterior cranial base length, SA: Saddle Angle, SNA: Sella-Nasion-point A, Pt. A N per: Point A to Nasion perpendicular, Co Pt. A: Condylion to point A, N-A (II HP): Nasion to point A (parallel to horizontal plane), SNB: Sella-Nasion- point B, Pog N perp: Pogonion to nasion perpendicular, N-B (II HP): Nasion to point B (parallel to horizontal plane), N Pog II HP: Nasion to pogonion parallel horizontal plane, CoGn: Condylion to Gnathion, MMD: Maxillary/mandibular difference, FMA: Frankfort mandibular plane angle, GA: Gonial angle, YAA: Y-axis angle, FAA: Facial-axis angle, JR: Jarabaks ratio, LAFH: Lower anterior facial height, UINA: Upper incisor to NA, UIAPog: Upper incisor to A-Pog, UI SN: Upper incisor to S-N, U1 NF: Upper incisor to nasal floor, LINB: Lower incisor to NB, L1MP: Lower incisor to Mandibular Plane, L1APog: Lower incisor to A-Pogonion, NA: Nasolabial angle, UI E line: Upper lip to E line, LI E line: Lower lip to E line, HA: Holdaway angle

obtained were used in place of landmark identification in this study because cephalometric measurements are the result of cephalometric tracing process and provide data for diagnosis and treatment planning. Also because of differences in landmark position used in combination to obtain the measurements might cancel each other out or increase the discrepancy.^[16,20]

We did this study on larger sample size as compared to most of the previous studies to obtain a quantitative and objective evaluation of the accuracy of cephalometric measurements obtained from computerized cephalometric softwares.

Most studies evaluating the accuracy of on-screen computer tracing software have transferred conventional cephalometric film to a digital format using indirect acquisition which may result in image distortion. Bruntz *et al.*^[21] found both vertical and horizontal distortion when analog film was converted to digital format using a scanner. Hence, the direct acquisition was used in our study to obtain digital image.

Landmark identification, a major source of error in cephalometric analysis is greatly affected by operator experience. Since the interexaminer error, in general, is greater than intraexaminer error, in this study all the landmark identification, tracing, and measurements were carried out by one investigator to minimize error.^[10] Furthermore, to avoid the errors due to fatigue, not more than 5 cephalograms were traced per day.

Further, the skeletal, dental, and soft tissue parameters used in this study were commonly used cephalometric variables for orthodontic diagnosis, treatment planning, and evaluation of treatment results [Table 2]. In addition, the parameters used included all the areas of the cephalogram for a more meaningful and reliable comparison between digital and manual tracing techniques.

Comparing level of agreement between the cephalometric measurements obtained from manual tracings and Dolphin® all the parameters showed high level of agreement between the measurements (ICC >0.915)

While comparing level of agreement between the cephalometric measurements obtained from manual tracings and AutoCEPH® out of 35 parameters 33 parameters showed high level of correlation between the measurements (ICC >0.943) except UI-E line (ICC 0.574 [0.249–0.758]) indicative of poor correlation whereas for LI-E line there was negative correlation (ICC -2.579 [-5.367 to -1.031]) with values outside theoretically possible range. Various studies comparing different commercially available computerized cephalometric softwares with conventional hand tracing have shown similar high agreement for most of the parameters. [10,11,26,34]

Similarly, while comparing level of agreement between the cephalometric measurements obtained from AutoCEPH $^{\odot}$ and Dolphin $^{\odot}$ out of 35 parameters 33 parameters showed high level of correlation between the measurements (ICC >0.906) except UI-E line (ICC 0.593 [0.283–0.769]) indicative of poor correlation whereas for LI-E line there was negative correlation (ICC–2.454 [–5.0286 to –0.960]) with values outside theoretically possible range.

All these findings suggest that the cephalometric measurement values obtained from AutoCEPH® showed good agreement with that obtained from both manual as well as Dolphin®. However, due to a programming error in the AutoCEPH. a constant negative sign appeared along with measured values in Rickett's soft tissue analysis.[35] Although the measured values were closer in magnitude but because of constant negative sign in place of original sign convention used while calculating Rickett's soft tissue analysis the values differed by a huge margin. This resulted in these aberrant values while comparing soft tissue parameters (UI-E line and LI-E line) in case of manual versus AutoCEPH[®] and AutoCEPH[®] versus Dolphin[®]. After analyzing the results, these findings were discussed with the software development engineers and necessary modifications were done in the newer version of the software, i.e., AutoCEPH[©] (V2.0). We evaluated the accuracy of these two parameters in newer version. Average values for these two cephalometric parameters did not show significant differences (P < 0.05) [Table 7] and ICC values were above 0.9 [Table 8], suggestive of very high correlation for all the 35 parameters.

CONCLUSION

A high level of agreement for cephalometric measurements obtained from the AutoCEPH® version 1.0 with both manual as well as for Dolphin® version 11.7 in all the parameters gives clear evidence that AutoCEPH® software can be used widely with good accuracy in carrying out routine cephalometric analysis. AutoCEPH® is an indigenous 2D cephalometric analysis software which has been developed keeping in view current trends in cephalometric software. Hence, it can serve as a cost-effective and user-friendly tool fulfilling the needs of the contemporary clinical practices as well as clinical research prevalent in India and the neighboring countries.

Table 7: Average cephalometric values of soft tissue parameters in newer version of AutoCEPH® compared with Hand tracing and Dolphin® software

Parameters	Average cephalometric values			
	Manual	AutoCEPH®	Dolphin®	
UI E line (mm)	0.33±2.65	0.10±2.50	0.07±2.49	0.97
LI E line (mm)	3.71±3.77	3.75 ± 3.67	3.98 ± 3.55	0.98

Table 8: Intraclass correlation coefficient (ICC) and 95% confidence interval (CI) of cephalometric measurements in newer version between hand tracing, AutoCEPH $^{\circ}$ and Dolphin $^{\circ}$ - Soft tissue parameters

Parameters	Manual Manual Vs VsAutoceph Dolphin			tocephVs Dolphin		
	ICC	95% CI	ICC	95% CI	ICC	95% CI
UI E line	0.985	0.939-0.996	0.991	0.965-0.998	0.990	0.959-0.997
LI E line	0.989	0.956-0.997	0.990	0.959-0.997	0.998	0.991-0.999

ICC: Intraclass correlation coefficient, CI: Confidence interval

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Steiner CC. The use of cephalometrics as an aid to planning and assessing orthodontic treatment. Am J Orthod 1960;46:721-35.
- Baumrind S, Frantz RC. The reliability of head film measurements 1. Landmark identification. Am J Orthod 1971;60:111-27.
- Baumrind S, Frantz RC. The reliability of head film measurements 2. Conventional angular and linear measures. Am J Orthod 1971;60:505-17.
- Ricketts RM. Perspectives in the clinical application of cephalometrics. The first fifty years. Angle Orthod 1981;51:115-50.
- Baumrind S, Miller DM. Computer-aided head film analysis: The University of California San Francisco method. Am J Orthod 1980;78:41-65.
- Cohen AM, Linney AD. A low cost system for computer-based cephalometric analysis. Br J Orthod 1986;13:105-8.
- Houston WJ, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod 1986;8:149-51.
- Sandler PJ. Reproducibility of cephalometric measurements. Br J Orthod 1988;15:105-10.
- Celik E, Polat-Ozsoy O, Toygar Memikoglu TU. Comparison of cephalometric measurements with digital versus conventional cephalometric analysis. Eur J Orthod 2009;31:241-6.
- Sayinsu K, Isik F, Trakyali G, Arun T. An evaluation of the errors in cephalometric measurements on scanned cephalometric images and conventional tracings. Eur J Orthod 2007;29:105-8.
- Tsorovas G, Karsten AL. A comparison of hand-tracing and cephalometric analysis computer programs with and without advanced features – Accuracy and time demands. Eur J Orthod 2010;32:721-8.
- Liu JK, Chen YT, Cheng KS. Accuracy of computerized automatic identification of cephalometric landmarks. Am J Orthod Orthop 2000;118:535-40.
- Erkan M, Gurel HG, Nur M, Demirel B. Reliability of four different computerized cephalometric analysis programs. Eur J Orthod 2012;34:318-21.
- Albarakati SF, Kula KS, Ghoneima AA. The reliability and reproducibility of cephalometric measurements: A comparison of conventional and digital methods. Dentomaxillofac Radiol 2012;41:11-7.
- 15. Nimkarn Y, Miles PG. Reliability of computer-generated cephalometrics. Int J Adult Orthodon Orthognath Surg 1995;10:43-52.
- Ongkosuwito EM, Katsaros C, van't Hof MA, Bodegom JC, Kuijpers-Jagtman AM. The reproducibility of cephalometric measurements: A comparison of analogue and digital methods. Eur J Orthod 2002;24:655-65.
- Gregston MD, Kula T, Hardman P, Glaros A, Kula K. A comparison of conventional and digital radiographic methods and cephalometric analysis software: I. Hard tissue. Semin Orthod 2004;10:204-11.
- 18. Power G, Breckon J, Sherriff M, McDonald F. Dolphin imaging software: An analysis of the accuracy of cephalometric digitization and

- orthognathic prediction. Int J Oral Maxillofac Surg 2005;34:619-26.
- Gossett CB, Preston CB, Dunford R, Lampasso J. Prediction accuracy of computer-assisted surgical visual treatment objectives as compared with conventional visual treatment objectives. J Oral Maxillofac Surg 2005;63:609-17
- Santoro M, Jarjoura K, Cangialosi TJ. Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique. Am J Orthod Dentofacial Orthop 2006;129:345-51.
- Bruntz LQ, Palomo JM, Baden S, Hans MG. A comparison of scanned lateral cephalograms with corresponding original radiographs. Am J Orthod Dentofacial Orthop 2006;130:340-8.
- Roden-Johnson D, English J, Gallerano R. Comparison of hand-traced and computerized cephalograms: Landmark identification, measurement, and superimposition accuracy. Am J Orthod Dentofacial Orthop 2008;133:556-64.
- Dvortsin DP, Sandham A, Pruim GJ, Dijkstra PU. A comparison of the reproducibility of manual tracing and on-screen digitization for cephalometric profile variables. Eur J Orthod 2008;30:586-91.
- Polat-Ozsoy O, Gokcelik A, Toygar Memikoglu TU. Differences in cephalometric measurements: A comparison of digital versus hand-tracing methods. Eur J Orthod 2009;31:254-9.
- Naoumova J, Lindman R. A comparison of manual traced images and corresponding scanned radiographs digitally traced. Eur J Orthod 2009;31:247-53
- Uysal T, Baysal A, Yagci A. Evaluation of speed, repeatability, and reproducibility of digital radiography with manual versus computer-assisted cephalometric analyses. Eur J Orthod 2009;31:523-8.
- 27. Krishnaraj R, Balasubramaniam MR, Shetty RS, Arumugam E. A comparison of conventional, digitized and digital methods of hard tissue cephalometric parameters. SRM Univ J Dent Sci 2010;1:68-74.
- Paixão MB, Sobral MC, Vogel CJ, Araujo TM. Comparative study between manual and digital cephalometric tracing using dolphin imaging software with lateral radiographs. Dent Press J Orthod 2010;15:123-30.
- Guedes PA, Souza, JEN de, Tuji FM, Nery EM. A comparative study of manual vs. computerized cephalometric analysis .Dental Press J Orthod 2010;15:44-51.
- 30. Tikku T, Khanna R, Maurya RP, Srivastava K, Bhushan R. Comparative evaluation of cephalometric measurements of monitor-displayed images by Nemoceph software and its hard copy by manual tracing. J Oral Biol Craniofac Res 2014;4:35-41.
- Prabhakar R, Rajakumar P, Karthikeyan MK, Saravanan R, Vikram NR, Reddy A. A hard tissue cephalometric comparative study between hand tracing and computerized tracing. J Pharm Bioallied Sci 2014;6 Suppl 1:S101-6.
- Kumar D, Singh R, Dua VS, Punia P, Solanki R, Khangwal M. Comparison of manual and computerized tracing using computer software: Burstone analysis. Int J Dent Health Sci 2014;1:131-40.
- Segura FJE, Valverde AS, Ocampo AM, Angelares PRC. Comparative study between digital and manual cephalometry with digital radiographs. Revista Mexicana de Ortodoncia 2014;2:93-6.
- Goracci C, Ferrari M. Reproducibility of measurements in tablet-assisted, PC-aided, and manual cephalometric analysis. Angle Orthod 2014;84:437-42.
- Rickets RM. Cephalometric analysis and synthesis. Angle Orthod 1961;31:141-56.